<Back to projects listing

Integrating Genomic Approaches to Improve Dairy Cattle Resilience: a Comprehensive Goal to Enhance Canadian Dairy Industry Sustainability

Extended

molecules image

Project Overview

Dairy is one of Canada's most important and dynamic industries, significantly contributing to the country’s GDP. Global demand for dairy products is set to expand further, while at the same time, the industry is facing several emerging issues, related to human and animal health, environmental impacts, sustainability, and social acceptability. This project looked to satisfy increasing demand and ensure the global competitiveness of Canada’s dairy cattle industry, while ensuring overall sustainability. 

The overall objective of the project was to develop new datasets and genomic tools to deliver a more ‘resilient’ cow, i.e. an animal able to adapt rapidly to changing environmental conditions, without compromising its productivity, health or fertility while becoming more resource-efficient and reducing its environmental burden. Improvement in overall animal resilience will reduce costs for the Canadian dairy industry and provide wider benefits to society. 

What Did the Research Team Do?

This project developed and implemented a set of new breeding tools for dairy farmers and the artificial insemination industry based on novel traits for resilience. An integrated multidisciplinary approach was used with seven research activities: 

  1. Identified and implemented new “closer-to-biology” female phenotypes for fertility to enhance selection accuracy for estrous expression and embryo survival.
  2. Improved accuracy of genetic selection for various health traits and broaden disease resistance by adding new phenotypes to the health evaluation portfolio.
  3. Improved animal environmental efficiency by increasing the size of the reference population for genomic selection of improved feed efficiency and reduced methane emission.
  4. Clarified how the expression of the traits in Activity 1 to 3 interact and how they are impacted by environmental factors.
  5. Investigated potential epigenetic effects across lactation and generations for important traits. 
  6. Identified other genomic and epigenetic markers for candidate genes or regions associated with the traits of interest. 
  7. Defined the needs and values of both industry and consumers to identify optimal sets of traits that integrate farmer and consumer perspectives.

What Did the Research Team Do?

The research team delivered several impactful results including: 

Closer to Biology Fertility 

  • Standardized phenotypes based on digital estrous behaviour events captured by automated sensors to be used for genetic selection of animals for optimal estrous expression.  
  • Linked estrous behaviour events with physiological processes, including circulating concentrations of progesterone in plasma and milk that are important for embryo survival. 
  • Identified Ano-genital distance as a key indicator trait for selection for improved fertility. 

Enhanced Disease Resistance 

  • Developed routine phenotyping, protocols for data recording, and a data pipeline from farms to Lactanet to collect data for fertility disorders (cystic ovaries, retained placenta, and metritis), Johne’s Disease, calf health factors (respiratory disease, diarrhea, and calf survivability) 
  • Incorporated fertility disorders into routine genomic analyses leading to improved herd reproduction and profitability.  

Feed Efficiency and Methane Reduction 

  • Enlarged the international reference populations for feed efficiency and methane emissions to 14,868 and 4,504 respectively, leading to higher accuracies of genomic evaluations. 
  • Incorporated feed efficiency and methane efficiency into routine genomic analyses allowing for improved environmental sustainability across the dairy industry.

Genetic and Environmental Relationships

  • Identified how the expression of resilience traits are regulated and their relationship with other traits. 
  • Estimated genetic parameters for the resilience traits outlined above and identified favorable genetic parameters for the incorporation of these traits into routine genomic selection.

Multigenerational and Epigenetic Effects 

  • Quantified the effect of early maternal environment on resilience of daughters and discovered epigenetic markers related to resilience, providing information and tools to optimize management decisions and cow resilience. 

Sustainability and Social Acceptance 

  • Identified farm level and market level outcomes from selection of resilience traits and public acceptance of dairy under different breeding strategies. 

Principal Investigators

Christine Baes 
University of Guelph

Co-Investigators

Ronaldo Cerri 
University of British Columbia

Marc-André Sirard 
Université Laval

Paul Stothard 
University of Alberta

Key Words

  • Resilience, fertility phenotypes, cow health, environmental efficiency, epigenetics

Period: 2018-2024
Budget: $12,058,736

Last Updated: July 10, 2024

PROJECT COMMUNICATION OUTPUTS

Dairy Research

Podcast

Methane’s genetic heritability, big data, and the changing meaning of AI with Filippo Miglior

LISTEN
Dairy Research

Podcast

Timed AI

LISTEN
Dairy Research

Trade Publication

Canada delivers evaluations aimed at reducing methane emissions in dairy cattle

READ MORE
Dairy Research

Trade Publication

The climate-friendly cows bred to belch less methane

READ MORE
Dairy Research

Trade Publication

Lower-Burp Cows to be Bred with World-Leading Methods Based on U of G Research

READ MORE
Dairy Research

Trade Publication

Canada can now bred for methane efficient dairy cows

READ MORE
Dairy Research

Trade Publication

Burp-busting breeding possible

READ MORE
Dairy Research

Trade Publication

Introducing Methane Efficiency!

READ MORE
Dairy Research

Trade Publication

Genetic Selection for Reduce Methane (CH4)

READ MORE
Dairy Research

Trade Publication

Genetics may answer methane riddle

READ MORE
Dairy Research

Trade Publication

Lactanet to add methane efficiency trait to cattle selection portfolio

READ MORE
Dairy Research

Trade Publication

‘Low-methane’ dairy cows the latest genetic trait touted by bull semen vendor Semex

READ MORE
Dairy Research

Trade Publication

Genetic research is improving fertility and health

READ MORE
Dairy Research

Video

Genomics 101

WATCH
Dairy Research

Video

Genomics 360

WATCH
Dairy Research

Infographic

Impact of Leukosis in Canada

LEARN MORE
Dairy Research

Infographic

Breeding Dairy Cattle for Climate Resilience

LEARN MORE

PROJECT PUBLICATIONS

  • Houlahan, K., Schenkel, F. S., Hailemariam, D., Lassen, J., Kargo, M., Cole, J. B., Connor, E. E., Wegmann, S., Junior, O., Miglior, F., Fleming, A., Chud, T. C. S., & Baes, C. F. 2021. Effects of incorporating dry matter intake and residual feed intake into a selection index for dairy cattle using deterministic modeling. Animals. 11(4), 1157. https://doi.org/10.3390/ani11041157
  • Tippenhauer, C. M., Plenio, J. L., Madureira, A. M. L., Cerri, R. L. A., Heuwieser, W., & Borchardt, S. 2021. Factors associated with estrous expression and subsequent fertility in lactating dairy cows using automated activity monitoring. J. Dairy. Sci. 104(5), 6267–6282. https://doi.org/10.3168/jds.2020-19578
  • Tippenhauer, C. M., Plenio, J. L., Madureira, A., Heuwieser, W., & Borchardt, S. 2023. Timing of artificial insemination using sexed or conventional semen based on automated activity monitoring of estrus in Holstein heifers. Animals. 13(19), 2994. https://doi.org/10.3390/ani13192994
  • Plenio, J.L., Bartel, A., Madureira, A.M.L., Cerri, R.L.A., Heuwieser, W., & Borchardt, S. 2021. Application note: Validation of BovHEAT — An open-source analysis tool to process data from automated activity monitoring systems in dairy cattle for estrus detection. Computers and Electronics in Agriculture. 188, 106323. https://doi.org/10.1016/j.compag.2021.106323
  • Borchardt, S., Tippenhauer, C.M., Plenio, J.L., Bartel, A., Madureira, A.M.L., Cerri, R.L.A., & Heewieser, W. 2021. Association of estrous expression detected by an automated activity monitoring system within 40 days in milk and reproductive performance of lactating Holstein cows. J. Dairy. Sci. 104(8): P9195-9204. https://doi.org/10.3168/jds.2020-19705
  • Madureira, A. M. L., Burnett, T. A., Marques, J. C. S., Moore, A. L., Borchardt, S., Heuwieser, W., Guida, T. G., Vasconcelos, J. L. M., Baes, C. F., & Cerri, R. L. A. 2022. Occurrence and greater intensity of estrus in recipient lactating dairy cows improve pregnancy per embryo transfer. J. Dairy. Sci. 105(1), 877–888. https://doi.org/10.3168/jds.2021-20437
  • Madureira, A. M. L., Burnett, T. A., Borchardt, S., Heuwieser, W., Baes, C. F., Vasconcelos, J. L. M., & Cerri, R. L. A. 2021. Plasma concentrations of progesterone in the preceding estrous cycle are associated with the intensity of estrus and fertility of Holstein cows. PloS one, 16(8), e0248453. https://doi.org/10.1371/journal.pone.0248453
  • Campos, I.L., Chud, T.C.S., Oliveira, H.R., Baes, C.F., Canovas, A., & Schenkel, F.S. 2022. Using publicly available weather station data to investigate the effects of heat stress on milk production traits in Canadian Holstein cattle. Canadian Journal of Animal Science. 102(2): 368-381. https://doi.org/10.1139/cjas-2021-0088
  • Chen, S. Y., Schenkel, F. S., Melo, A. L. P., Oliveira, H. R., Pedrosa, V. B., Araujo, A. C., Melka, M. G., & Brito, L. F. 2022. Identifying pleiotropic variants and candidate genes for fertility and reproduction traits in Holstein cattle via association studies based on imputed whole-genome sequence genotypes. BMC genomics. 23(1), 331. https://doi.org/10.1186/s12864-022-08555-z
  • Madureira, A. M. L., Denis-Robichaud, J., Guida, T. G., Cerri, R. L. A., & Vasconcelos, J. L. M. 2022. Association between genomic daughter pregnancy rates and reproductive parameters in Holstein dairy cattle. J. Dairy. Sci. 105(6), 5534–5543. https://doi.org/10.3168/jds.2021-21766
  • Martin, A. A. A., de Oliveira, G., Jr, Madureira, A. M. L., Miglior, F., LeBlanc, S. J., Cerri, R. L. A., Baes, C. F., & Schenkel, F. S. 2022. Reproductive tract size and position score: Estimation of genetic parameters for a novel fertility trait in dairy cows. J. Dairy. Sci. 105(10), 8189–8198. https://doi.org/10.3168/jds.2021-21651
  • Alcantara, L. M., Schenkel, F. S., Lynch, C., Oliveira Junior, G. A., Baes, C. F., & Tulpan, D. 2022. Machine learning classification of breeding protocol descriptions from Canadian Holsteins. J. Dairy. Sci. 105(10), 8177–8188. https://doi.org/10.3168/jds.2021-21663
  • Shadpour, S., Chud, T. C. S., Hailemariam, D., Plastow, G., Oliveira, H. R., Stothard, P., Lassen, J., Miglior, F., Baes, C. F., Tulpan, D., & Schenkel, F. S. 2022. Predicting methane emission in Canadian Holstein dairy cattle using milk mid-infrared reflectance spectroscopy and other commonly available predictors via artificial neural networks. J. Dairy. Sci. 105(10), 8272–8285. https://doi.org/10.3168/jds.2021-21176
  • Shadpour, S., Chud, T. C. S., Hailemariam, D., Oliveira, H. R., Plastow, G., Stothard, P., Lassen, J., Baldwin, R., Miglior, F., Baes, C. F., Tulpan, D., & Schenkel, F. S. 2022. Predicting dry matter intake in Canadian Holstein dairy cattle using milk mid-infrared reflectance spectroscopy and other commonly available predictors via artificial neural networks. J. Dairy. Sci. 105(10), 8257–8271. https://doi.org/10.3168/jds.2021-21297
  • Bolormaa, S., MacLeod, I. M., Khansefid, M., Marett, L. C., Wales, W. J., Miglior, F., Baes, C. F., Schenkel, F. S., Connor, E. E., Manzanilla-Pech, C. I. V., Stothard, P., Herman, E., Nieuwhof, G. J., Goddard, M. E., & Pryce, J. E. 2022. Sharing of either phenotypes or genetic variants can increase the accuracy of genomic prediction of feed efficiency. Genet. Sel. Evol. 54(1), 60. https://doi.org/10.1186/s12711-022-00749-z
  • Denis-Robichaud, J., Fernandes, A. C. C., Santos, J. E. P., & Cerri, R. L. A. 2022. Circulating progesterone at insemination and accessory spermatozoa are associated with fertilization and embryo quality five or six days post insemination in dairy cattle. Theriogenology. 189, 64–69. https://doi.org/10.1016/j.theriogenology.2022.04.018
  • Campos, I. L., Chud, T. C. S., Junior, G. A. O., Baes, C. F., Cánovas, Á., & Schenkel, F. S. 2022. Estimation of Genetic Parameters of Heat Tolerance for Production Traits in Canadian Holsteins Cattle. Animals, 12(24), 3585. https://doi.org/10.3390/ani12243585
  • Rockett, P. L., Campos, I. L., Baes, C. F., Tulpan, D., Miglior, F., & Schenkel, F. S. 2023. Phenotypic analysis of heat stress in Holsteins using test-day production records and NASA POWER meteorological data. J. Dairy. Sci. 106(2), 1142–1158. https://doi.org/10.3168/jds.2022-22370
  • Martin, A. A. A., Id-Lahoucine, S., Fonseca, P. A. S., Rochus, C. M., Alcantara, L. M., Tulpan, D., LeBlanc, S. J., Miglior, F., Casellas, J., Cánovas, A., Baes, C. F., & Schenkel, F. S. 2022. Unravelling the genetics of non-random fertilization associated with gametic incompatibility. Scientific reports.12(1), 22314. https://doi.org/10.1038/s41598-022-26910-8
  • Madureira, A. M. L., Burnett, T. A., Carrelli, J. E., Gobikrushanth, M., Cerri, R. L. A., & Ambrose, D. J. 2022. Anogenital distance is associated with postpartum estrous activity, intensity of estrous expression, ovulation, and progesterone concentrations in lactating Holstein cows. J. Dairy. Sci. 105(10), 8523–8534. https://doi.org/10.3168/jds.2022-21897
  • van Staaveren, N., Hyland, E., Houlahan, K., Lynch, C., Miglior, F., Kelton, D.F., Schenkel, F.S., Baes, C.F. 2023. Recording of calf health for potential use in breeding programs: A case study on calf respiratory illness and diarrhea. Canadian Journal of Animal Science. 103(2): 192-203. https://doi.org/10.1139/cjas-2022-0112
  • Pereira, M. H. C., Cappellozza, B. I., Cerri, R. L. A., Sanches, C. P., Jr, Guida, T. G., Barbosa, L. F. S. P., Santos, J. E. P., & Vasconcelos, J. L. M. 2023. Effects of additional gonadotropin-releasing hormone and prostaglandin F2α treatment to an estradiol/progesterone-based embryo transfer protocol for recipient lactating dairy cows. J. Dairy. Sci. 106(2), 1414–1428. https://doi.org/10.3168/jds.2022-22134
  • Kamalanathan, S., Houlahan, K., Miglior, F., Chud, T. C. S., Seymour, D. J., Hailemariam, D., Plastow, G., de Oliveira, H. R., Baes, C. F., & Schenkel, F. S. 2023. Genetic Analysis of Methane Emission Traits in Holstein Dairy Cattle. Animals. 13(8), 1308. https://doi.org/10.3390/ani13081308
  • Bolormaa, S., Haile-Mariam, M., Marett, L.C., Miglior, F., Baes, C.F., Schenkel, F.S., Connor, E.E., Manzanilla-Pech, C.I.V., Wall, E., Coffey, M.P., Goddard, M.E., MacLeod, I.M., & Pryce, J.E. 2023. Use of dry-matter intake recorded at multiple time periods during lactation increases the accuracy of genomic prediction for dry-matter intake and residual feed intake in dairy cattle. Animal Production Science. 63(11): 1113-1125. https://doi.org/10.1071/AN23022
  • Rockett, P. L., Campos, I. L., Baes, C. F., Tulpan, D., Miglior, F., & Schenkel, F. S. 2023. Genetic evaluation of heat tolerance in Holsteins using test-day production records and NASA POWER weather data. J. Dairy. Sci. 106(10), 6995–7007. https://doi.org/10.3168/jds.2022-22776
  • Houlahan, K., Schenkel, F. S., Miglior, F., Jamrozik, J., Stephansen, R. B., González-Recio, O., Charfeddine, N., Segelke, D., Butty, A. M., Stratz, P., VandeHaar, M. J., Tempelman, R. J., Weigel, K., White, H., Peñagaricano, F., Koltes, J. E., Santos, J. E. P., Baldwin 6th, R. L., & Baes, C. F. 2024. Estimation of genetic parameters for feed efficiency traits using random regression models in dairy cattle. J. Dairy. Sci. 107(3), 1523–1534. https://doi.org/10.3168/jds.2022-23124
  • van Staaveren, N., Rojas de Oliveira, H., Houlahan, K., Chud, T. C. S., Oliveira, G. A., Jr, Hailemariam, D., Kistemaker, G., Miglior, F., Plastow, G., Schenkel, F. S., Cerri, R., Sirard, M. A., Stothard, P., Pryce, J., Butty, A., Stratz, P., Abdalla, E. A. E., Segelke, D., Stamer, E., Thaller, G., … Baes, C. F. 2024. The Resilient Dairy Genome Project-A general overview of methods and objectives related to feed efficiency and methane emissions. J. Dairy. Sci. 107(3), 1510–1522. https://doi.org/10.3168/jds.2022-22951
  • Smith, O., Rochus, C. M.  Baes, C. F., & N. van Staaveren. 2023. A note on dairy cow behavior when measuring enteric methane emissions with the GreenFeed emission monitoring system in tie-stalls. JDS Communications. [In Press] https://doi.org/10.3168/jdsc.2023-0451
  • Lopes, L. S. F., Schenkel, F. S., Houlahan, K., Rochus, C. M., Oliveira, G. A., Jr, Oliveira, H. R., Miglior, F., Alcantara, L. M., Tulpan, D., & Baes, C. F. 2024. Estimates of genetic parameters for rumination time, feed efficiency, and methane production traits in first lactation Holstein cows. J. Dairy. Sci. S0022-0302(24)00055-9. Advance online publication. https://doi.org/10.3168/jds.2023-23751
  • Frizzarin, M., Miglior, F., Berry, D. P., Gormley, I. C., & Baes, C. F. 2023. Usefulness of mid-infrared spectroscopy as a tool to estimate body condition score change from milk samples in intensively fed dairy cows. J. Dairy. Sci. 106(12), 9115–9124. https://doi.org/10.3168/jds.2023-23290
  • Oliveira, H.R., Sweett, H., Narayana, S., Fleming, A., Shadpour, S., Malchiodi, F., Jamrozik, J., Kistemaker, G., Sullivan, P., Schenkel, F., Hailemariam, D., Stothard, P., Plastow, G., Van Doormaal, B., Lohuis, M., Shannon, J., Baes, C., Miglior, F. 2024. Symposium Review: Development of genomic evaluation for methane efficiency in Canadian Holsteins. JDS Communications. [In Press]. https://doi.org/10.3168/jdsc.2023-0431
  • Lynch, C., Schenkel, F. S., van Staaveren, N., Miglior, F., Kelton, D., & Baes, C. F. 2024. Investigating the potential for genetic selection of dairy calf disease traits using management data. J. Dairy. Sci. 107(2), 1022–1034. https://doi.org/10.3168/jds.2023-23780
  • Marques, J. C. S., Maciel, J. P. O., Denis-Robichaud, J., Conceicao, R. S., Bega, A. M., Moore, S., Sirard, M. A., Baes, C. F., & Cerri, R. L. A. 2023. The effect of progesterone concentrations during superovulation of Holstein heifers in a randomized trial. J. Dairy. Sci. 106(12), 9677–9690. https://doi.org/10.3168/jds.2022-23065
  • Marques, J. C. S., Burnett, T. A., Denis-Robichaud, J., Madureira, A. M. L., & Cerri, R. L. A. 2023. Validation of a leg-mounted pedometer for the measurement of steps in lactating Holstein cows. JDS communications. 5(1), 67–71. https://doi.org/10.3168/jdsc.2023-0403
  • Madureira, A. M. L., Plenio, J. L., Vasconcelos, J. L. M., Guida, T. G., Cerri, R. L. A., & Borchardt, S. 2024. Association between genomic daughter pregnancy rate and expected milk production on the resumption of estrus behavior in Holstein cattle. J. Dairy. Sci. 107(3), 1592–1602. https://doi.org/10.3168/jds.2023-23439
  • Borchardt, S., Burnett, T. A., Heuwieser, W., Plenio, J. L., Conceição, R. S., Cerri, R. L. A., & Madureira, A. M. L. 2023. Efficacy of an automated technology at detecting early postpartum estrus events: Can we detect resumption of cyclicity?. JDS communications, 5(3), 225–229. https://doi.org/10.3168/jdsc.2023-0463
  • McFarland, E. D., Elsohaby, I., Baes, C. F., Stryhn, H., Keefe, G., & McClure, J. T. 2024. Impacts of preweaning colostrum feeding practices and health measures on dairy cow production, while accounting for genetic potential. J. Anim. Sci. 102, skae061. https://doi.org/10.1093/jas/skae061
  • Lynch, C., Leishman, E. M., Miglior, F., Kelton, D., Schenkel, F. S., & Baes, C. F. 2024. Review: Opportunities and challenges for the genetic selection of dairy calf disease traits. Animal. 101141. Advance online publication. https://doi.org/10.1016/j.animal.2024.101141